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AbslracL A theoretical investigation of a binaly mixture of hard spheres confirms that 
stable superlallice ~truct~res. with a complex long-range order of the AB13 type, can 
form in lhese simple systems for intermediate values of the diameter ratio, in agreement 
with recenr compurer simulations and experimental studies of colloidal suspensions. It  
is s h m  that the larger entropy of mixing of the AB13 structure relative to that of the 
competing structures is responsible for its thermodynamic stability. 

In recent years, colloidal suspensions with a well defined small degree of polydispersity 
and a well characterized interaction potential have become currently available [l]. 
Because the periodicities of the ordered structures which can appear in such 
suspensions are comparable to the wavelength of visible light, these structures are 
iridescent and can be analysed by means of standard light scattering techniques [2]. 
The detailed analysis of these structures has revealed an astonishingly rich phase 
behaviour [3] which provides a challenge to the current theories of freezing [4]. In 
the present investigation we will be concerned with a particular type of suspension, 
namely, a binary mixture of ‘hard-sphere’ colloids, i.e. colloids for which the short- 
ranged repulsion between the colloidal particles has been arranged so as to mimic a 
hard-sphere (HS) interaction by means of a suitable coating of the colloidal particles 
[SI. Experimental studies of such binary mixtures have revealed the formation of 
complex superlattice structures 161 similar to those of some inter-metallic alloys and 
of some unusual gem opals [7]. Because the underlying HS potential can only drive 
phase transitions where the configurational entropy is balanced by geometric packing 
effects [SI, the  appearance of such complex phases is quite unexpected. In view of the 
possible presence in the experimental systems of a small amount of polydispersity and 
a weak departure from perfect HS behaviour, as well as the very long nucleation times 
involved, any alternative confirmation of these findings should be considered welcome. 
It is therefore comforting that recent Monte Carlo (MC) computer simulations of 
binary mixtures of A and B hard spheres have confirmed the stability of the AB,, 
structure 191. The efficient exploration of the phase space of HS mixtures by MC 
simulations is however not a simple problem either [lo], while the finite-size effects 
in mixtures containing only 64 spheres of type A are equally difficult to assess leaving 
some doubt as to whether the true (infinite system) equilibrium conditions have 
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been met. For these reasons we report here a theoretical study, based on a density 
functional approach which has proven [ll] to provide a very accurate description 
of one-component HS solids, which adds further evidence. for the existence. of the 
superlattice structures found in the above experiments [6] and simulations (91. 

We consider a system composed of N A  large spheres of diameter uA and 
N B  smaller spheres of diameter uB with the N = N A  + NB spheres enclosed 
at temperature T in a volume V and interacting only through the HS potential 
which is infinite when two spheres overlap and zero otherwise. The appropriate 
thermodynamic potential is the (Helmholtz) free energy, F = F ( T ,  V ,  N A ,  N E ) ,  
which for spatially ordered phases described by the partial local densities at r ,  p i ( r )  
with N i  = J d r p i ( r )  for i = A,B,  becomes a functional (indicated by square 
brackets) of the pi(r) given by 

F(T,V;[p,. , ,pd) = kBT / d w i ( r )  (In($pi(+)) - 1) + F, (1) 
i=A.B 

where IC, denotes Boltzmann's constant, Ai the thermal de Broglie wavelength of 
species i, while for notational convenience the implicit dependence on T and V has 
not been indicated explicitly in the RHs of (1). The excess free energy, Fe, of ( l ) ,  can 
in turn he expressed in terms of the Ornstein-Zernike direct correlation functions 
(DCF), c i j ( r , r ' )  as 

where X is a 'charging' parameter and p = l /k,T.  For a spatially uniform fluid 
phase (superscript zero) of densities p i  = Ni  / V ,  equation (2) reduces to 

A.B 

i d  
V' " c u l m  ex\ 1 3 r,.  " 9 PA? . = - 1' " [ A -  [IJX ~ ~ - ~ ~ ~ ~ i ~ j ~ ~ j ~ ~ i ~ ~ ; ~ ~ A , ~ ~ B ~  6) I "' I" 
as discussed in more detail in [11,12]. Following the prescription of [ll] we now 
turn the exact relation (2) into a manageable one by replacing the exact DCF cij 
of (2) by their approximate analytic Percus-Yevick (PY) expression for a binary 

where {PA( A ) ,  & ( A ) }  are the effective uniform densities describing the  non-uniform 
phase of densities { X p A ( r ) ,  Xp , ( r ) ) .  Thking the effective liquid to be of the same 
composition, N A / N  E xA = l-zB, as the original system we write pA(X) = z A p ( X )  
and & ( A )  = xBp(X), and determine the (total) effective density p ( X )  by equating 
the excess free energy per particle of the non-uniform phase as determined by (2) to 
the excess free energy per particle of the effective liquid as obtained from (3). This 
yields an integral equation for p ( X )  which has to be solved for p(X = 1)  knowing 
that p(X = 0) = 0. The result is a straightfonvard generalization to mixtures of 
the 'generalized effective liquid approximation' (GEM) originally formulated for a 
one-component system [11]. As usual, the  explicit evaluations will be performed by 

HS fluid mixture (see [12]), c i j ( r ,  r'; [XpA,XpB]) - cij PY ( I T  - r ' I ; P n ( X ) , p B ( X ) ) .  
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parametrizing the HS density profiles in terms of Gaussians centred at the lattice sites 
{R('))  occupied by species i: 

where the width parameters {aA,aB) are determined so as to minimize the total 
free energy of (1). These calculations can now be routinely performed and yield, for 
instance, a very accurate description of the one-component HS system [ll]. 

The general phase diagram of a mixture can then be found by computing F for 
various phases as explained in [12]. The phase behaviour of binary HS mixtures is 
known to be a very sensitive function of the diameter ratio y = uB/uA(< 1). For 
nearly similar spheres (1 > y > 0.8) the HS fluid was predicted [12] (using a primitive 
version of the above theory, see [ll]) to  freeze into a substitutionally disordered or 
mixed crystal where both species occupy the sites of a compact lattice structure with 
a fluid-solid phase diagram which transforms rapidly, when decreasing y, from a 
spindle shape into an azeotropic and finally into an eutectic phase diagram. This 
theoretical scenario was later confirmed by MC simulations on HS mixtures [lo] and 
also found to be consistent with the experiments on colloids [3]. For very dissimilar 
spheres (0.5 > y > 0) one expects the HS fluid to freeze into an AB structure of the 
NaCl type where the small spheres occupy the interstitial holes of a compact lattice 
structure formed by the large spheres but this situation has not yet been investigated 
for colloids. The region of interest here concerns instead the intermediate y-values, 
0.8 > y > 0.5, for which the experiments, on both opals [7] and colloids [6], have 
found superlattice structures of the AB, type with n as large as 13 leading to an 
unexpectedly complex long-range order with a unit cell of 112 spheres [7]. Both AB, 
and AB,, structures have been found. The presence of the AB, structure, an alternate 
stacking of hexagonal A planes and honeycomb B planes [7], can be understood as 
due to an optimization of the excluded volume effects resulting in a better packing 
(higher close-packing fraction) compared to that of a phase-separated solid A + solid 
B, system where both A and B form a compact structure. This geometric packing 
argument does not hold, however, for the AB,, structure, a simple cubic lattice of A 
spheres with the cubes filled by a centred icosahedra of B spheres rotating by ?r/2 
when going from one sub-cell to the next [7], whose close-packing fraction is lower 
than that of the solid A + solid B phase. A tentative explanation for the stability of 
the AB,, structure in terms of the entropy of mixing will be given below. 

The dimensionless free energy per particle, OFIN, depends (apart from a 
trivial constant) on the composition zB = 1 - xA, the overall packing fraction 
q = Ci,A,B(n/6)(Niu:/V) and the diameter ratio y. In order to explore the 
two-dimensional parameter space (q, zB) in search of stable AB, structures we 
will increase q along a line of constant composition equal to that of the AB,, 
structure (xB = n / ( n  + 1)) at the experimentally studied y-value (y = 0.58). 
The phase diagram at constant total volume (so as to mimic the incompressibility 
of the host fluid of the colloidal particles [6]) can be obtained by computing the 
values of PF/N,  obtained as described above, for various phases. Although the 
experimentally determined structures are slightly non-ideal we have fixed the ratio c/a 
of the interplane to in-plane distances at their ideal value (see [7]). For example, we 
used c/a = d ( 1  + 27 - 3yZ)/3 /y for the AB, structure, yielding that c/a = 1.068 
for y = 0.58, a value close to the experimental [6] and simulation ones [9]; for the 
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AB,, structure, we used aA/aB = d 4 ( d / ~ ~ ) ~  - 1 + 4,/4(d/~~)~ -2, where aA is 
the lattice constant of the A spheres, aB the edge length of the icosahedra formed by 
the B spheres and d the distance between a vertex and the centre of the icosahedra 
(d/aB = 0.951). For the phase behaviour of the n = 2 mixture we find the scenario 
illustrated in figure 1. 
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11 
Flgure 1. The dimensionless free energy per particle. @ F I N  (shifted by the constant 
term - 1  + I n ( h f t / a f t ) ) ,  as a function of the total packing fraction r) for a fixed 
overall composition z g  = 3 and a diameler ratio 7 = 0.58 It is assumed that 
m A / m B  = ( o ~ / a ~ ) ~ .  The phases represented are: fluid (filled circles), fluid + solid 
A (empty circles), fluid + solid A + solid B (triangles), solid A + solid B (dashed line), 
fluid + AB2 (the line connecting the two crosses) and the AB2 phase (solid line). 
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Figure 2. The same as figure 1 bul for Z B  = E .  The same sequence of phases are 
represented, but the superlaltice phase is now AB,,. The Auid + solid A phase is not 
visible on lhis scale since ils range of stability is very small (0.528 < 1) < 0.541), and 
its free energy is very close to that of the fluid + AB13 phase. 
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At low density (q < 0.52) the fluid mixture is the  only stable phase (its free 
energy has been represented here by the equation of Mansoori et a/ [13]). Increasing 
the density there appears a stable phase Ruid + solid A consisting of a fluid mixture 
in coexistence with a solid of A spheres arranged in a compact lattice for which we 
have considered the face-centred cubic structure. The composition and density of the 
coexisting fluid phase, as well as the fraction of the total volume occupied by it, are 
fixed by the given overall composition (zB = :), total density (q) and the total volume 
(V) [14]. This implies for instance that zB > f in the coexisting fluid phase (since 
zB = 0 in the solid A phase). At q > 0.52 this fluid + solid A phase becomes stable 
wm the pure fluid mixture and, hence, the large spheres crystallize first. At higher 
densities (q > 0.54) an AB, structure is formed leading for q > 0.603 to a stable 
fluid + solid AB, phase with this time zB = f both in the coexisting solid and fluid 
phases. Finally for q > 0.625 only the pure solid AB, phase survives as a stable phase 
while other phases, like solid A + solid B, are found to be metastable (higher free 
energy) in the range of densities considered (q < 0.70). We notice that our transition 
densities agree very well with recent simulation resuls on the same mixture [9], where 
the fluid + solid A phase becomes stable at q = 0.51, and the AB, structure is stable 
for q > 0.615. When n is increased, this scenario is slightly modified(see figure 2). 
For n = 13, and hence zB = E ,  we find that at q = 0.528 the fluid mixture is 
transformed directly into a fluid + solid AB,, phase with q, = 0.528 and qs = 0.586, 
at 0 = 0.586 the mixture transforms into a pure solid AB,, phase which remains 
stable WRT the phase-separated solid A -t solid B phase up to the highest density 
considered, i.e. q = 0.70. Notice [7] that the close-packing fraction for the AB,, 
structure at our y is qcp = 0.713. We also observe that the freeenergy difference 
between the AB,, and the solid A + solid B phases is quite small. In the simulation 
of 191, the fluid + solid AB,, phase was not considered. Instead, the authors found 
that at q = 0.523 the fluid + solid A phase becomes stable and transforms into a 
pure AB,, phase at q = 0.545, which is found to be stable with respect to  the solid 
A + solid B phases up to 0 % 0.71. In figure 3, we show a comparison between 
the  theoretical and simulation free energies for the AB,, structure, in the density 
range 0.55 < q < 0.70. The agreement is very good (notice that the simulation 
results have not been corrected for possible finite-size effects). Comparing the two 
situations (n = 2 and n = 13) we also observe that although AB,, has a higher free 
energy than AB, it is stable at lower packing fractions than AB,. This finding and the 
above scenarios are in good agreement with the experimental observations on colloids 
[6]. The stability of the AB,, structure can be understood here on the basis of the 
observation [SI that while the excess free energy F, of (2) favours compact lattice 
structures, the configurational or 'ideal' free energy F - F, of (1) favours structure8 
with a high configurational entropy. As a result, the less compact AB,, structure has 
a higher excess free energy than the competing solid A + solid B structure but this 
difference is compensated by its lower configurational free energy resulting from its 
higher entropy of mixing (see figure 4). 

From the above we conclude that the experimental studies on binary mixtures of 
colloidal particles [6], the MC simulations of 191 and the present theoretical density 
functional study of binary HS mixtures reveal that, for intermediate diameter ratios, 
a thermodynamically stable superlattice structure of the AB,, type can be formed 
on the basis of pure excluded volume interactions. An entropy-of-mixing effect can 
be invoked to explain the stability of the AB,, structure while pure space-filling 
arguments [7] would disfavour it. 
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Fkum 3. The dimensionless free 
energy per panicle. @ F I N  (shifted by 
a conslant), versus the packing fraction, 
q. for the  ideal AB1, Structure (ZB = 14' 
7 = 0.58) as obtained from the present 
theory (solid line) compared to the MC 

simulation results (dashed line) of 191. 
Notice that the simulation results are for 
a finite system of 64 A spheres and 832 
U spheres. 
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F l p m  4. Difference of the dimensionless excess and 'ideal' 
(or configurational) free energies per panicle (f = P F / N ) .  
as obtained fmm (1) and (2), between the ABn and solid A 
+ solid B phases at z g  = $ and 7 = 0.58. In the density 
range shown, Afa E f..[AB,,]- fcx[SA +Sa] (dashed line) 
is p i l i v e ,  favouring the solid A + solid B phase as expeefed 
on the basis of packing arguments while A &  (dotted line) is 
negative, favouring the AB11 stmcture. ?he difference of the 
total free energies Af = Afid+A f.. (solid line) is negative, 
indicating an AB13 phase which is thermodynamically stable 
relative Io the phaseseparated solid A + solid B phase. 
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